首页 >> 学院概况 >> 师资队伍
李春艳
发布时间:2024年03月12日 20:29点击量:

李春艳,博士,副研究员,博士生导师,云南师范大学高层次引进人才。2022年6月毕业于厦门大学信息学院,获工学博士学位。主要研究方向为智能计算、面向生物医药的人工智能。主持国家自然科学基金2项(在研),主持云南省重点项目1项(在研),主持教育厅科研项目2项(结项2项,优秀2项)。近五年在国际知名期刊《IEEE Transactions on Neural Networks and Learning Systems》、《IEEE Journal of Biomedical and Health Informatics》、《Expert Systems with Applications》、《Neurocomputing》、《Briefings in Bioinformatics》、《Pattern Recognition》等SCI期刊和AAAI等CCF A类会议发表学术论文20余篇,研究成果在多个学术媒体公众号上进行了报道。社会服务方面,长期担任多个国际SCI期刊的审稿人、多个国际知名会议AAAI、ICANN等的Program Committee Member和参与国际知名公众号DrugAI的运营和维护。

 

研究方向:智能计算、面向生物医药的人工智能

 

科研项目:

1.基于图上分布外泛化的分子表征解纠缠研究,国家自然科学基金(面上项目),2025,在研,主持;

2.基于3D自监督学习的药物分子属性预测研究,国家自然科学基金(地区项目),2023,在研,主持;

3.基于图卷积神经网络的3D分子指纹表征学习,云南省教育厅,2020,结项(优秀),主持;

4.基于序列建模增强的小分子药物性质预测研究,云南省教育厅,2022,结项(优秀),主持;

 

发表的部分论文:

[1] Li Chunyan; Yao Junfeng; Su Jinsong; Liu Zhaoyang; Zeng Xiangxiang; Huang Chenxi. LagNet: Deep Lagrangian Mechanics for Plug-and-Play Molecular Representation Learning [C]. Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, 37(4), 5169-5177, 2023. (AAAI-23, Oral)

[2] Li Chunyan; Yao Junfeng*; Wei Wei*; Niu Zhangming; Zeng Xiangxiang*; Li Jin; Wang Jianmin. Geometry-based Molecular Generation with Deep Constrained Variational Autoencoder [J]. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022.

[3] Li Chunyan; Wei Wei; Li Jin; Yao Junfeng*; Zeng Xiangxiang*; LV Zhihan. 3DMol-Net: Learn 3D Molecular Representation using Adaptive Graph Convolutional Network Based on Rotation Invariance [J]. IEEE Journal of Biomedical and Health Informatics (JBHI), Volume:26, Issue:10, 2022.

[4] Li Chunyan; Wang Jianmin; Niu Zhangming; Yao Junfeng*; Zeng Xiangxiang*. A Spatial-temporal Gated Attention Module for Molecular Property Prediction Based on Molecular Geometry [J]. Briefings in Bioinformatics, 22(5), bbab078, 2021.

[5] Li Chunyan; Feng Jihua; Liu Shihu; Yao Junfeng*. A Novel Molecular Representation Learning for Molecular Property Prediction with a Multiple SMILES-based Augmentation [J]. Computational Intelligence and Neuroscience, Vol. 2022.

[6] Li Chunyan#; Liu Hongju#; Hu Qian; Que Jinlong; Yao Junfeng*. A Novel Computational Model for Predicting microRNA–Disease Associations Based on Heterogeneous Graph Convolutional Networks [J]. Cells, 8(9), p.977, 2019.

[7] Li Chunyan; Wang Jiaji; Wang Shuihua; Zhang Yudong*. A Review of IoT Applications in Healthcare [J]. Neurocomputing, 565, 2024.

[8] Chen Ruizhe; Li Chunyan*(通讯作者); Wang Longyue; Liu Mingquan; Chen Shugao; Yang Jiahao; Zeng Xiangxiang. Pretraining graph transformer for molecular representation with fusion of multimodal information [J]. Information Fusion. Volume 115, March 2025, 102784.

[9] Liu Zhaoyang; Xiao Yuteng; Wang Honglei; Li Chunyan*(通讯作者); Yin Hongsheng*. BBM: A novel beta-binomial-distribution-based biclustering algorithm for mining m6A co-methylation patterns [J]. Expert Systems with Applications(ESWA), https://doi.org/10.1016/j.eswa.2024.125121, 2024.

[10] Liu Mingquan; Li Chunyan*(通讯作者); Chen Ruizhe; Cao Dongsheng; Zeng Xiangxiang*. Geometric Deep Learning for Drug Discovery [J]. Expert Systems with Applications (ESWA), 2023.

[11] Min Xiaoping; Lu Fengqing; Li Chunyan*(通讯作者). Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction [J]. Current Pharmaceutical Design, 27(15), pp.1847-1855, 2021.

[12] Huang Wei; Li Chunyan*(通讯作者); Ju Ying; Gao Yan. The Next Generation of Machine Learning in DDIs Prediction [J]. Current Pharmaceutical Design, 27(23), pp.2728-2736, PMID: 33504300, 2021.

[13] Wang Jianmin; Wang Xun; Chu Yanyi; Li Chunyan; Li Xue; Meng Xiangyu; Fang Yitian; Tai No Kyong; Mao Jiashun; Zeng Xiangxiang. Exploring the Conformational Ensembles of Protein−Protein Complex with Transformer-Based Generative Model [J]. Journal of Chemical Theory and Computation, DOI: 10.1021/acs.jctc.4c00255, 2024.

[14] Wang Jianmin; Mao Jiashun; Li Chunyan; Xiang Hongxin; Wang Xun; Wang Shuang; Wang Zixu; Chen Yangyang; Li Yuquan; Tai No Kyong; Song Tao; Zeng Xiangxiang. Interface-aware Molecular Generative Framework for Protein-Protein Interaction Modulators [J]. Journal of Cheminformatics, 142, 2024.

[15] Wang Zixu; Chen Yangyang; Guo Xiulan; Li Yayang; Li Pengyong; Li Chunyan; Ye Xiucai; Sakurai Tetsuya. DiffSeqMol: A Non-Autoregressive Diffusion-Based Approach for Molecular Sequence Generation and Optimization [J]. Current Bioinformatics, Volume 20, Issue 1, 2025, pp.46-58.

[16] Lu Fengqing; Li Mufei; Min Xiaoping*; Li Chunyan; Zeng Xiangxiang*. De Novo generation of dual-target ligands using adversarial training and reinforcement learning [J]. Briefings in Bioinformatics, 22(6), bbab333, 2021.

[17] Hu Qian; Lin Fan*; Wang Beizhan*; Li Chunyan. MBRep: Motif-based Representation Learning in Heterogeneous Networks [J]. Expert Systems with Applications (ESWA), 190, p.116031, 2022.

[18] Xu Meiyan; Yao Junfeng*; Zhang Zhihong; Li Rui; Yang Baorong; Li Chunyan; Li Jun; Zhang Junsong*. Learning EEG topographical representation for classification via convolutional neural network [J]. Pattern Recognition, 105, p.107390, 2020.

 

联系方式:

Email: 59888543@qq.com

 

 

< <返回